What is AIML The Topics You Have To KNOW About (AIML) Before You Start.

 AIML (ARTIFICIAL INTELLIGENCE / MACHINE LEARNING)

What is AIML The Topics You Have To KNOW About (AIML) Before You Start.


About the Course:

In this course, the participants will learn deep artificial neural networks (ANN) basics to

its different branches convolutional neural network (CNN) for computer vision, LSTM

(Long short-term-memory) for NLP (natural language processing) to mathematics (linear

algebra & calculus) and Python (basic to advanced) to implement deep neural network

libraries like TensorFlow, PyTorch and API (Application programming interface) like keras.


About the Trainers:

A Team of Trainers with 30+ years of overall combined industry experience And 8

years on AIML. Currently working on AI & data science related projects.


What is the prerequisite?

Basic computer knowledge, good in math (12th class), passion to build intelligent

systems to solve real-world problems.


Education Qualification?

Any Graduate/Engineer with a math background


Duration

120 Hours (normal track)


AIML (ARTIFICIAL INTELLIGENCE / MACHINE LEARNING)

Content@glance


Topics                                                                                                  Duaration

Introduction to AI (Artificial intelligence)

Programming (Python) for AI                                                              6 Weeks

Mathematics for AI 1 Week
ML (Machine Learning) - a branch of AI                                             2 Week

Deep Learning - a subfield of ML                                                        2 Weeks

AI on Cloud
Getting started With Cloud                                                                   1 Week

Natural Language Processing with a mini Project                                2 Weeks

Computer Vision with a mini Project                                                    2 Weeks


AIML (ARTIFICIAL INTELLIGENCE / MACHINE LEARNING)

Topics                                                                                                    Details


Introduction to AI                                                                                        Introduction
                                                                                        History, Why? How? Real-time Examples of AI

Programming for AI
                    • Getting Started with Python
                    • Python Intermediate
                    • Numpy
                    • Python Advanced
                    • RegEx
                    • OOPs
                    • Lambda
                    • Database
Mathematics for AI
                    • Linear Algebra
                    • Calculus
                    • Fundamental Statistics
                    • Advanced Calculus
                    • Numerical Optimisation

 

Machine Learning
  • Machine Learning
  • Supervised Learning
  • Unsupervised Learning
  • Reinforcement Learning
  • Linear Regression
  • Logistic Regression
  • Polynomial Regression
  • Multiple Regression
  • Classification
  • Prediction
  • Algorithms
  • Support Vector Machines (SVMs)
  • Tree Models
  • Naive Bayes Model
  • Principal Component Analysis
  • Clustering
  • Boosting
  • Time Series

AIML (ARTIFICIAL INTELLIGENCE / MACHINE LEARNING)

Topics                                                                                                    Details

Deep Learning

  • Deep Learning
  • Architecture
  • Neural Networks
  • Multi Level Perceptron
  • Convolutional Neural Networks
  • Recurrent Neural Networks
Professional AI
Getting started With Cloud

  • AWS Fundamentals and Services
  • Azure Fundamentals and Services
Natural Language Processing

  • Natural Language Processing
  • Introduction
  • Exploring NLP Libraries
  • NLTK
  • SPACY
  • GENSIM
  • KERAS
  • RASA
  • REGEX
  • SCIKIT LEARN
  • Python text files
  • PDF and regular expressions
  • Tokenization
  • Stemming
  • Lemmatization
  • stop words Phrase Matching and Vocabulary
  • Topic Modeling
  • Latent Dirichlet Allocation Overview
  • Non-negative Matrix Factorization
  • Text Blob
  • TextBlob Introduction


AIML (ARTIFICIAL INTELLIGENCE / MACHINE LEARNING)

Topics                                                                                                    Details 

Natural Language Processing


      • Finding a polarity of a string with TextBlob
      • Sentiment analysis with TextBlob
      • Measuring language subjectivity with TextBlob and
      • Python
      • Language Translation with Python Module TextBlob
      • ,
      • extBlob nGrams Spacy
      • Concepts and Parameters and Interacting with
      • Chatbot
      • Bonus: Discovering NLP on Cloud ( AWS, Azure and
      • Google Cloud Platform

Computer Vision


  • Computer Vision
  • Introduction
  • OpenCV
  • Introduction to the Library
  • Image Processing for Computer Vision
  • Linear Image Processing
  • Model Fitting
  • Frequency Domain Analysis
  • Camera Models and Calibration
  • Camera Views
  • Camera Models
  • Camera Calibration
  • Stereo Geometry
  • Image Motion
  • Image Classification
  • Photometry
  • Optical Flow
  • Tracking
  • Parametric model
  • Useful Libraries
  • Recognition
  • Generative Models
  • Discriminative models

AIML (ARTIFICIAL INTELLIGENCE / MACHINE LEARNING)

Topics                                                                                                    Details 


Computer Vision

  • Finding a polarity of a string with TextBlob
  • Sentiment analysis with TextBlob
  • Measuring language subjectivity with TextBlob and Python
  • Language Translation with Python Module TextBlob
  • extBlob nGrams Spacy
  • Color spaces and Segmentation
  • 3D perception
  • Binary Morphology
  • Bonus: Computer Vision On Cloud ( AWS, Azure andGoogle Cloud Platform)
  • Bonus: Discovering NLP on Cloud ( AWS, Azure andGoogle Cloud Platform
Mini projects

  • Auto Attendance through Facial recognition
  • Chatbots
  • Voice to text processing
  • OCR on Cloud. 

Duration

120 Hours 

  • Stay Tuned For More Blogs And Updates.....

Comments